Convexity of the Berezin range
نویسندگان
چکیده
This paper discusses the convexity of range Berezin transform. For a bounded operator T acting on reproducing kernel Hilbert space H (on set X), this is B(T):={?Tkˆx,kˆx?H:x?X}, where kˆx normalized for at x?X. Primarily, we focus characterizing class composition operators Hardy unit disk.
منابع مشابه
Convexity of the Joint Numerical Range
We consider linearly independent families of Hermitian matrices {A1, . . . , Am} so thatWk(A) is convex. It is shown that m can reach the upper bound 2k(n− k) + 1. A key idea in our study is relating the convexity of Wk(A) to the problem of constructing rank k orthogonal projections under linear constraints determined by A. The techniques are extended to study the convexity of other generalized...
متن کاملOn the Berezin - Toeplitz
I consider the problem of composing Berezin-Toeplitz operators on the Hilbert space of Gaussian square-integrable entire functions on complex n-space, C n. For several interesting algebras of functions on C n , we have T'T = T ' for all '; in the algebra, where T' is the Berezin-Toeplitz operator associated with ' and ' is a \twisted" associative product on the algebra of functions. On the othe...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولRange convexity and ambiguity averse preferences
We show that range convexity of beliefs, a ‘technical’ condition that appears naturally in axiomatizations of preferences in a Savage-like framework, imposes some unexpected restrictions when modelling ambiguity averse preferences. That is, when it is added to a mild condition, range convexity makes the preferences collapse to subjective expected utility as soon as they satisfy structural condi...
متن کاملBerezin Quantization of the Schrödinger Algebra
We examine the Schrödinger algebra in the framework of Berezin quantization. First, the Heisenberg-Weyl and sl(2) algebras are studied. Then the Berezin representation of the Schrödinger algebra is computed. In fact, the sl(2) piece of the Schrödinger algebra can be decoupled from the Heisenberg component. This is accomplished using a special realization of the sl(2) component that is built fro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2022
ISSN: ['1873-1856', '0024-3795']
DOI: https://doi.org/10.1016/j.laa.2022.04.003